If it's not what You are looking for type in the equation solver your own equation and let us solve it.
10x^2+8x+50=8x+3650
We move all terms to the left:
10x^2+8x+50-(8x+3650)=0
We get rid of parentheses
10x^2+8x-8x-3650+50=0
We add all the numbers together, and all the variables
10x^2-3600=0
a = 10; b = 0; c = -3600;
Δ = b2-4ac
Δ = 02-4·10·(-3600)
Δ = 144000
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{144000}=\sqrt{14400*10}=\sqrt{14400}*\sqrt{10}=120\sqrt{10}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-120\sqrt{10}}{2*10}=\frac{0-120\sqrt{10}}{20} =-\frac{120\sqrt{10}}{20} =-6\sqrt{10} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+120\sqrt{10}}{2*10}=\frac{0+120\sqrt{10}}{20} =\frac{120\sqrt{10}}{20} =6\sqrt{10} $
| -3m+5=-4m+10 | | -4-8(n+8)=-31-n | | 12-6x+11=47 | | 0.75x+0.8x=0.05 | | -4(p+16)+9=5 | | 4=1+4x+2(1-2x) | | 2+6u=-10+10u | | -6(2v+4)=-8(v+3)-4v | | 7x-6x+3=9 | | 134=-2-4(4x-6) | | 0.66x+0.50=2.50+x | | k−–7=16 | | 1/2x-2=1/4x+32 | | 5c+10+3c-6=36 | | 24y-15=9 | | (0,-1)-(2,3)=m | | (3x+7)=-8x | | 5(d+9)=27.5 | | -5(2r-2)=34-6r | | 1+8y=8+y | | 3c-9-c=29 | | 24+8(10)=s | | 5y+34=90 | | 5x-4=-(2x+6) | | 4x(x-2)-3x=-7 | | 9z-7=15 | | (16.95-12)/3=x | | 5x+10+2x=59 | | 12-4z=-20-4z | | 3x+4+56=180 | | 4j-6=3j | | 3(-9s+5)=-10s-6s-51 |